
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-190
Load-Balancing Algorithmsfor the Parallel Community Climate ModelbyIan T. Foster and Brian R. ToonenMathematics and Computer Science DivisionTechnical Memorandum No. 190January 1995This work was supported by the Atmospheric and Climate Research Division, O�ce of Energy Re-search, O�ce of Health and Environmental Research, U.S. Department of Energy, under ContractW-31-109-Eng-38.

ContentsAbstract 11 Introduction 12 PCCM2 23 Load Imbalances in PCCM2 34 Load-Balancing Algorithms 55 Implementation 75.1 De�nitions and Data Structures : 85.2 Data Movement Library : 96 Empirical Studies 96.1 Method : 96.2 Results : 116.3 Other Issues : 126.4 Experiments with Optimized PCCM2 : 137 Conclusions 14A Library Algorithms 15A.1 Layout Generation Algorithm : 15A.2 Generic Data Movement Algorithm : 16B Using the Library 18B.1 Schemas : 18B.2 Layouts : 19B.3 Extended Arrays : 19B.4 Data Movement Routines : 19Acknowledgment 20References 20
iii

Load-Balancing Algorithmsfor the Parallel Community Climate ModelIan T. Foster Brian R. ToonenAbstractImplementations of climate models on scalable parallel computer systems can suf-fer from load imbalances resulting from temporal and spatial variations in the amountof computation required for physical parameterizations such as solar radiation andconvective adjustment. We have developed specialized techniques for correcting suchimbalances. These techniques are incorporated in a general-purpose, programmableload-balancing library that allows the mapping of computation to processors to bespeci�ed as a series of maps generated by a programmer-supplied load-balancing mod-ule. The communication required to move from one map to another is performedautomatically by the library, without programmer intervention. In this paper, we de-scribe the load-balancing problem and the techniques that we have developed to solveit. We also describe speci�c load-balancing algorithms that we have developed forPCCM2, a scalable parallel implementation of the Community Climate Model, andpresent experimental results that demonstrate the e�ectiveness of these algorithms onparallel computers. The load-balancing library developed in this work is available foruse in other climate models.1 IntroductionScalable parallel computer systems use a high-speed interconnection network to connecthundreds or thousands of powerful microprocessors. Each processor typically has its ownmemory, executes independently, and exchanges messages with other processors to syn-chronize execution or share data. Contemporary examples of this architecture include theIntel Paragon, Thinking Machines CM5, IBM SP, and CRAY T3D.Science and engineering applications can often be adapted for execution on scalableparallel computers by using a technique called domain decomposition [4]. This worksas follows. First, principal program data structures are decomposed into disjoint subdo-mains of approximately equal size. Then, each subdomain is mapped together with itsassociated computation to a di�erent processor. Finally, communication is introduced tomove data between subdomains when this is required for computation. Unfortunately,the performance of a program developed by using these techniques can be compromisedby poor single-processor performance, by excessive interprocessor communication, or byload imbalance: a nonuniform mapping of computational load to processors. It is the lastproblem that we address in this report.While load-balancing is an important problem of general interest in parallel comput-ing, our particular interest is in developing e�cient load-balancing algorithms for parallel

climate models. Load imbalances can arise in climate models because the amount of com-putation to be performed per data item is variable. This variation occurs in the modelroutines that perform computations concerned with physical parameterizations such as so-lar radiation, gravity wave drag, and convective adjustment. This component of the modelis termed \physics" to distinguish it from \dynamics," which is primarily concerned withthe
uid dynamics of the atmosphere. While load imbalances can also arise in dynamics,these have a di�erent character and are not considered here.Computational load imbalance is generally addressed by using one of two methods.Static load-balancing techniques attempt to determine a static mapping of computationto processors that minimizes total execution time. While requiring no specialized runtimemechanisms, this technique does not appear well suited to climate models, in which loaddistribution can change signi�cantly during program execution. In contrast, dynamic load-balancing techniques allow the mapping of computation to processors to change duringprogram execution. The various mappings can be de�ned prior to execution and appliedby using a prede�ned schedule, or can be computed during execution. The techniquesthat we have developed support both mapping approaches.The rest of this report is as follows. Section 2 describes the structure of PCCM2, theparallel climate model that we use to evaluate our load-balancing techniques. Sections 3,4, and 5 describe the principal load imbalances that occur in PCCM2, a set of algorithmsthat we have developed to correct these load imbalances, and the structure of the librarydeveloped to implement these algorithms. Finally, Section 6 presents performance resultsfor the various algorithms, and Section 7 presents our conclusions.2 PCCM2While much of the work reported in this paper is independent of any particular climatemodel, our implementation work and empirical studies have been performed in the contextof PCCM2, a parallel implementation of the Community Climate Model (CCM2) devel-oped by the National Center for Atmospheric Research (NCAR) [3]. Hence, we provide abrief introduction to the structure of this model.Both dynamics and physics operate on a set of three-dimensional data structures withsize Nglat�Nglon�Ngver , whereNglat, Nglon, and Ngver are the number of grid points in thelatitudinal, longitudinal, and vertical direction, respectively. The parallel implementationuses domain decomposition techniques to decompose these data structures, and associatedcomputation, in the two horizontal dimensions [3]. Some of these data structures are usedonly by dynamics or only by physics; others are shared by the two components. At eachtime step, a subset of these data structures is passed between the two components of themodel, which are executed one after the other. Hence, it is most e�cient in the absence ofload imbalances to decompose physics data structures in the same way as dynamics datastructures.The dynamics data structures are decomposed as follows. Processors are divided intoprocessors responsible for groups of latitudes (Plat) and processors responsible for groupsof longitudes within a latitude row (Plon). For the purposes of this discussion, we re-strict Nglat, Nglon, Plat, and Plon to powers of two. The following restrictions also apply:Plat � (Nglat=2) and Plon � (Nglon=4). The resulting structure is illustrated in Figure 1 [2].In order to exploit symmetries in the dynamics computations, the latitudes are divided2

2

15

16

3

4

1

13

14

5

6

11

12

7

8

9

10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 2 3 4 1

5 6 7 8

9 10 11 12

13 14 15 16Figure 1: Initial Decomposition of a Physical Domain Consisting of 16 � 32 ColumnsMapped onto 16 Processorsinto 2�Plat sections with each section containing Nglat=(2�Plat) latitudes. For any givenlatitude processor row J , row J is assigned data sections J and 2� Plat � J . Thus, eachrow of latitude processors receives Nglon � Nglat=(2� plat) latitudes from the north andsymmetrically the same number of latitudes from the south, resulting in Nllat = Nglat=Platlatitudes of data being assigned to each latitude processor group.The longitudinal decomposition is a linear partitioning of the data columns. TheNgloncolumns of data found on each latitude are divided among the Plonprocessors, re-sulting in Nllon = Nglon=Plon data columns per latitude on any given processor. Since thepartitioning is linear, a longitude processor I is given data columns (I � 1) � Nllon + 1through I �Nllon from each latitude assigned to it.3 Load Imbalances in PCCM2In the current release, PCCM2.1, physics load imbalances account for 8.1 percent of totalexecution time at T42 resolution on the 512-processor Intel Touchstone Delta computer.This proportion is expected to increase as other components of the model are optimized.Three types of physics time step can be distinguished within PCCM2: partial radiation,full radiation, and no radiation [1]. Partial radiation time steps occur every hour (which,in the current implementation, is every third time step). During these time steps, theshortwave radiation calculations are performed. A full radiation time step additionallycomputes the absorptivity and emissivity of longwave radiation. These time steps occuronce every twelve hours (every 36 time steps). The remaining time steps are referred toas \no-radiation steps," since no solar radiation computations are performed.A study of computational load distribution within CCM2 reveals that the most signif-icant source of load imbalance is the diurnal cycle [6]. This is due to the computationallyexpensive shortwave radiation calculations performed during partial radiation time steps.3

5 10 15 20 25 30

2

4

6

8

10

12

14

16

Longitude

La
tit

ud
e

0 100 200 300 400 500 600
0

5

10

Time (msec)

F
re

qu
en

cyFigure 2: Physics Computation Time for a 16�32 Processor Mesh on the Intel TouchstoneDELTA When Using the Same Data Distribution as DynamicsBecause these calculations are performed only for grid columns exposed to solar radiation,processors containing exposed data columns perform signi�cantly more computation thanprocessors with few or no exposed data columns. Hence, if PCCM2 physics data struc-tures are decomposed in the same way as dynamics data structures, we obtain a spatialimbalance where approximately half the processors remain idle while the others performthe required radiation calculations (see Figure 2).The load imbalance introduced by the diurnal cycle is temporal as well as spatial [6].The earth's rotation about its axis causes the area impacted by solar radiation to contin-uously shift westward. In addition, the revolution of the earth around the sun results ina cyclic annual drift of the solar declination between the summer and winter solstices.
4

Hence, the latitudes exposed to solar radiation change over time. Furthermore, cyclingbetween the three types of time steps introduces still another form of load variation.Other load imbalances encountered in PCCM2 physics include land/sea imbalances,variations caused by weather patterns (e.g., convection over the Indian subcontinent dur-ing the monsoon), and the seasonal cycle [5]. While these are not currently viewed assigni�cant performance problems, future enhancements to PCCM2 physics may introducenew forms of load imbalance with these sort of patterns.4 Load-Balancing AlgorithmsThe load distribution characteristics of PCCM2 dynamics and physics, and indeed of thethree di�erent types of physics time steps, are so di�erent that it is not feasible to utilize asingle mapping of data and computation to processors. Instead, we require load-balancingalgorithms that change mapping frequently | in fact, on almost every time step. In thissection, we describe such a set of algorithms, each characterized by the mappings thatit employs. The implementation and performance of these algorithms are considered insubsequent sections.The library that we have developed to support our load-balancing algorithms providesa general framework that can be used to implement a wide range of algorithms. Thealgorithms that we develop for use in PCCM2, however, are concerned primarily with thediurnal cycle. Fortunately, the pairing of symmetric north-south latitudes in the initialdistribution compensates for most of the load variation resulting from the solstitial drift.However, the continual westward movement of the heavily loaded region, caused by earth'srotation about its axis, is not compensated for in the same manner.Within physics, computation performed within each vertical column is independentof that performed in other columns. This situation means that vertical columns andtheir associated computation can be migrated between processors without any signi�cantchanges to physics. We take advantage of this fact to alter the data distribution used inphysics so that each processor receives an equal number of daytime and nighttime datacolumns. Unfortunately, this decomposition cannot easily be used in dynamics. Hence,data must be returned to the initial decomposition after completion of physics computationand prior to the invocation of dynamics.The various load-balancing algorithms that we have developed for PCCM2 all seekto compensate for the load imbalance that results from the diurnal cycle, by migratingcolumns within individual latitudes (we do not migrate columns within longitudes becausethere is little load imbalance in the north/south direction). The algorithms di�er in thefrequency and patterns of migration that they employ.The simplest algorithm that we consider swaps every other data column with theprocessor directly opposite itself within its latitude. This column will be located on theprocessor that is longitudinally Plon=2 processors away. This algorithm causes a contigu-ous block of columns exposed to daylight to be dispersed to processors that contain few orno daytime columns, and hence does an excellent job of balancing load. Since each pro-cessor moves half of its data to another processor, it has the disadvantage of a large amount5

of data always being transmitted. On the other hand, the communication pattern ispredictable and hence amenable to optimization.The other algorithms that we consider seek to balance load by moving a smaller numberof columns. In general, this approach can reduce communication requirements and theoverhead associated with the load-balancing library. With these algorithms, the solarradiation state of each data column must be determined. For our purposes, the zenithangle computations found in CCM2's radinp routine provide su�cient information. Usingthe cosine of the zenith angle, we can easily determine the columns exposed to solarradiation by checking for a value greater than zero.Given information about which data columns are exposed to solar radiation, a secondswapping algorithm can be considered. This algorithm determines the di�erence, d, in thenumber of daytime columns on a given processor and the processor Plon=2 processors to thewest. Then, d2 daytime columns from the more heavily loaded processor are exchanged foran equal number of nighttime columns from the opposing processor. This method reducesthe number of data columns being transmitted but requires that a separate mapping begenerated for each radiation time step. These mappings must be either cached or computedon the
y. While caching is su�cient for the trial runs associated with this study, it isinfeasible for the extended runs common to climate models.Slightly more complex is the algorithm that moves data columns rather than simplyswapping them. To accomplish this, we must estimate computation costs associated witha column. We determine the computation costs as follows. First, we determine the ratio ofthe computation times required for daytime and nighttime columns. We refer to this ratioas the daypoint-nightpoint ratio, dn . This ratio is computed in a calibration step, priorto running the model. Using this information and the exposure information discussedpreviously, we can determine the cost of computation associated with the data columnson a every latitude and processor. The cost for any given latitude and processor is simplydn�Nday+1�Nnight , where Nday is the number of columns exposed to daylight and Nnightis the number of columns in complete darkness.In addition to estimating computation costs, the movement algorithm necessitates theextension of the data arrays used within physics so as to provide room for more than Nlloncolumns per latitude. Because the rest of PCCM2 assumes Nllon columns per latitude,and cannot easily be modi�ed, it becomes necessary to copy data arrays from dynamicsarrays to new \extended arrays" prior to calling physics. This step represents additionaloverhead not found in either of the swapping algorithms.The movement algorithm attempts to move columns between a given processor and theprocessor o�set 180 degrees in longitude, because this strategy was found to compensatewell for the diurnal cycle imbalance. In this algorithm, daytime columns are moved fromthe more heavily loaded processor until the cost di�erence between the two processorsis minimized. Then, the same technique is used for nighttime points, thus providing a�ne{grain adjustment. Since physics requires the data columns on each processor to becontiguous, data columns may need to move locally. To minimize this local movement,we choose the data columns to be transported to opposing processors from right to left inthe data arrays.For comparison purposes, we also included a version of the well-known recursive bisec-tion algorithm in this study. The bisection algorithm, like the movement algorithm,linebreak 6

uses the daypoint-nightpoint ratio and the zenith angle to determine the cost associatedwith each column. The data columns within a latitude are recursively divided into twogroups with approximately equal costs. The recursion continues until each processor hasbeen assigned a contiguous set of columns.Since all four algorithms are designed to deal with the diurnal cycle, they are appliedonly during radiation time steps: that is, once every hour. During non-radiation time steps,physics data structures remain in their initial decomposition. Hence, the �rst swappingalgorithm alternates between two mappings: the initial mapping and a swapped mapping.For the purposes of this study, the other algorithms use a di�erent mapping for eachradiation time step.5 ImplementationThe load-balancing algorithms described in the preceding section are implemented by ageneral-purpose, con�gurable data movement library. This library allows the programmerdeveloping load-balancing algorithms to specify simply the mapping of data columns toprocessors that is to apply within physics at each time step; the library then takes care oforganizing the movement of data required to support this mapping.Data movement is required for two purposes. At every time step, data structuresshared by physics and dynamics must be reorganized from the physics mapping to thedynamics mapping prior to calling dynamics, and then back to the physics mapping priorto calling physics. In addition, data structures used only with physics must be reorganizedwhenever the physics mapping changes.Obviously, we wish to minimize the amount of data communicated by the data move-ment library. Hence, we distinguish between the following four categories of physics datastructures. Each has its own set of data movement requirements.Input: These variables are shared by physics and dynamics. They are used to pass valuesfrom dynamics to physics, but not from physics to dynamics. Hence, they must bereorganized before calling physics, but not after.Output: These variables are shared by physics and dynamics. They are used to passvalues from physics to dynamics, but not from dynamics to physics. Hence, theymust be reorganized after calling physics, but not before.Input/Output: These variables are shared by physics and dynamics. They are used topass values both from physics to dynamics and from dynamics to physics. Hence,they must be reorganized both before and after calling physics.State: These variables are only used within physics. Within PCCM2, these are variableswhose values are set at the beginning of the model and then remain constant orchange only rarely during execution. These variables are most often found in com-mon blocks, although they may be occasionally stored in temporary �les or in-corestorage. It is necessary to reorganize these variables only when the physics mappingchanges. 7

5.1 De�nitions and Data StructuresA load-balancing algorithm is represented to the data movement library as a set of schemasand a schedule. In this section, we de�ne these terms and provide additional informationon the techniques used to implement load-balancing algorithms.As PCCM2 performs computation one latitude at a time, the load-balancing librarytransfers data columns to processors only within the same latitude processor group. Inother words, a column may be transferred from P1 to P2 only if bP1=Plonc = bP2=Plonc.Furthermore, the data column must be assigned to the same latitude on the new andoriginal processors. Although these restrictions limit load-balancing to a single dimension,it would not be di�cult to remove these restrictions should load-balancing in the seconddimension be required.Schema: A schema de�nes a valid mapping of physics columns to processors. A mappingis represented as an Nglat � Nglon integer array in which the (i; j)-th entry identi�es theprocessor on which the (i; j)-th physics columns is to be located. The constraints placedon a schema are that (a) the number of data columns assigned to any one processor ineach latitude is no more than the constant Nllonx, where Nllonx � Nllon is the maximumnumber of data columns per latitude that any processor has space allocated for, and (b)a column not be assigned to a processor not existing in its latitude processor group. Aspecial schema, the identity schema, is de�ned as a mapping that assigns all columns totheir initial (or home) processor. The following is an example of an identity schema for a4� 8 grid, mapped to 4 processors in a 2� 2 con�guration.1 1 1 1 2 2 2 21 1 1 1 2 2 2 23 3 3 3 4 4 4 43 3 3 3 4 4 4 4The following schema allocates ten columns to processor 1, six to processor 2, eleven toprocessor 3, and �ve to processor 4.1 1 1 1 2 1 2 11 1 1 1 2 2 2 23 3 3 3 4 4 3 33 3 3 3 4 4 4 3The following schema is not valid because it attempts to send a column from processor1 to processor 3, thereby violating the restriction that the receiving processor be in thesame latitude processor group as the sender.1 1 1 3 2 1 2 11 1 1 1 2 2 2 23 3 3 3 4 4 3 33 3 3 3 4 4 4 38

Table 1: Daypoint-Nightpoint RatiosProcessors Daypoint-Nightpoint RatioLat. Long. Full Radiation Partial Radiation4 8 1.19 4.208 8 1.18 4.138 16 1.15 3.6216 16 1.15 3.6316 32 1.11 3.21Schema Set: A schema set is a collection of schemas from which a single schema may beselected to de�ne the current data mapping. Every schema set must contain the identityschema as the �rst member of the set.Schedule: A schedule speci�es which schema in the schema set is to be applied at eachtime step.5.2 Data Movement LibraryThe load-balancing system uses three data movement routines to reorganize data whenswitching from one schema to another. These routines, all based on a generic movementalgorithm, are summarized below; they and the generic movement algorithm are describedin detail in Appendix A.2.State Reorganization: By de�nition, state data do not change (or at most very rarely)and hence need by moved only when the schedule calls for a schema change. Thestate reorganization algorithm controls the movement of state data, ensuring thattransmission is minimized.Input Exchange: The input exchange routine is responsible for transporting variablesthat are classi�ed as both input and input/output. This routine also determines thenumber of data columns currently assigned to the processor.Output Exchange: The output exchange algorithm is responsible for transporting vari-ables that are classi�ed as both input/output and output.6 Empirical Studies6.1 MethodThe performance of the four algorithms discussed in Section 4 was measured by us-ing an instrumented version of PCCM2. This instrumented version is based on an earlyrelease of PCCM2 in which the dynamics algorithms are not optimized. This reducesthe proportion of total time taken in physics and hence the apparent impact of the load-balancing algorithms, but does not invalidate the comparison of the algorithms. In Section9

Table 2: PCCM2 Performance Results for a 16�32 Mesh on the Intel Touchstone DELTATime (msec) RelativeSection Algorithm Full Partial None Average SpeedupOverall bisection 3589.0 1179.5 858.6 1032.5 1.010movement 3592.0 1103.5 847.3 1001.8 1.041swapping 3489.0 1111.6 846.7 1001.0 1.042swapping2 3473.0 1102.8 848.2 998.9 1.044original 3740.0 1276.5 823.9 1043.2Physics bisection 2829.0 346.5 63.7 226.9 1.185movement 2826.0 294.1 63.8 210.9 1.275swapping 2702.0 306.4 62.9 210.6 1.276swapping2 2700.0 296.5 63.0 207.6 1.295original 2998.0 504.5 47.0 268.86.4, we present the performance results when the �rst swapping algorithm is incorpo-rated into a more optimized PCCM2.Several forty time step runs were performed on the Intel Touchstone DELTA at T42resolution (64� 128 grid of data columns) with the number of processors varying between32 and 512. All of the algorithms used were speci�ed by schema sets and schedules loadedfrom �les. We chose to limit the runs to forty time steps since that number encompassedall types of time steps while minimizing the number of layouts that had to be bu�ered inmemory. Although this approach allowed us to explore the diurnal cycle, we were unableto observe the e�ects of the seasonal cycle.Since the movement and recursive bisection algorithms require a daypoint-nightpointratio, we performed several runs with di�erent processor counts. During these runs, thetime requirements for a varying number of daytime points were measured. From this in-formation, we were able to compute the daypoint-nightpoint ratio for each of the processorcounts (see Table 1).Once the preliminary work was complete, schema sets along with schedules were gen-erated and stored. Then, two separate sets of performance runs were performed. The�rst sets of runs measured the overall performance of the model. The second set gatheredinformation about the overhead of the load-balancing system. The runs were separated toavoid probe e�ects from a�ecting overall performance measurements. A disadvantage ofthis approach is that the total times and measured overheads do not always add up.Although the load-balancing system has introduced additional overhead to each timestep, we �nd that it succeeds in reducing the load imbalance caused by the solar radia-tion calculations. As can be seen in Figure 3 and more vividly in Figure 4, the overallperformance of the model has been improved by more than 4 percent when using theswapping algorithms on all 512 processors of the Intel Touchstone DELTA. This improve-ment in performance is a direct result of the near-elimination of the load imbalance withinphysics.Tables 2 and 3 contain the actual execution and overhead times measured on 512processors of the Intel Touchstone DELTA. The tables give average times over all timesteps for each type of time step: full radiation, partial radiation, and non-radiation. They10

Table 3: Load-Balancing Overhead for a 16� 32 Mesh on the Intel Touchstone DELTATime (msec)Section Algorithm Full Partial None AverageInput bisection 9.0 38.3 2.2 13.4movement 4.0 19.0 2.5 7.6swapping 20.0 19.4 2.2 8.0swapping2 18.0 19.4 2.2 7.9Output bisection 8.0 44.2 2.0 15.1movement 3.0 19.7 2.0 7.5swapping 20.0 20.0 2.0 8.0swapping2 19.0 19.6 2.0 7.9State bisection 10.0 55.0 30.4 37.4movement 4.0 29.3 13.2 17.8swapping 26.0 27.1 14.5 18.6swapping2 26.0 26.5 13.9 18.1Extend bisection 8.0 8.5 8.4 8.4movement 8.0 8.9 8.4 8.5swapping 0.0 0.0 0.0 0.0swapping2 0.0 0.0 0.0 0.0Total bisection 35.0 146.0 43.0 74.3movement 19.0 76.9 26.1 41.4swapping 66.0 66.5 18.7 34.6swapping2 63.0 65.5 18.1 33.9also give the average time for all time steps. It should be noted that the latter value isnot simply the average of the other three columns but is a weighted average, where theweights are based on the number of time steps executed for each type within a 24-hourperiod.The overhead data in Table 3 breaks down load-balancing costs into four categories.The �rst three correspond to the input exchange, output exchange, and state reorgani-zation operations described in Section 5.2, while the fourth is the copying required whenmoving data from the dynamics arrays to the extended arrays used in physics in the non-swapping algorithms. Note that the swapping algorithms do not incur \Extend" costs.6.2 ResultsIt is clear from Figure 4 that the second swapping algorithm was the most e�ective on theIntel Touchstone DELTA. With this algorithm, the imbalance caused by the diurnal cycleis reduced from 6.8 percent to 0.8 percent. Clearly, this swapping algorithm succeeds ineliminating almost all of the imbalance. This result is apparent when Figures 2 and 5are compared. Physics execution time on 512 processors, excluding the overhead of theload-balancing system, is reduced by 22.8 percent. The overall execution time for anaverage time step is decreased by 4.3 percent, despite the 3.3 percent of additional overheadintroduced by the load-balancing system. Similar �gures are also seen with the �rst11

1000

2000

3000

4000

5000

32 64 128 256 512

T
im

e
(m

se
c)

Processors

bisection
movement
swapping

swapping2
original

Figure 3: Overall Performance on the Intel Touchstone DELTAswapping algorithm.For comparative purposes, Figure 6 shows the load distribution obtained with the re-cursive bisection algorithm, which improved overall performance by only 1.0 percent. Thereason for this algorithm's poor performance is clear: it performs much more commu-nication than the other algorithms and, in consequence, incurs signi�cantly higher load-balancing overheads. Additionally, the large spatial imbalance resulting from the diurnalcycle is not easily removed without reordering the columns within a latitude. Not havingthe ability to intersperse nighttime columns among the daytime columns, this algorithmfails to make the �ne-grain adjustments necessary to balance the radiation calculations.In theory, one would expect the movement algorithm to outperform the swapping al-gorithms; however, the empirical data show it to be less e�ective than expected. Althoughthis algorithm communicates less data than either of the swapping algorithms, it has theadditional overhead of extending the physics arrays. It also proves to be slightly less e�ec-tive in balancing load. This is because it expects the computational costs associated witha daytime or nighttime column are constant. However, physics contains other imbalancesbesides the diurnal cycle. Although smaller in magnitude, these imbalances do have animpact, which is compensated for by swapping but not by movement.6.3 Other IssuesThe algorithms used in this study switch to an identity mapping during non-radiationtime steps. Hence, physics state data are reorganized both before and after each radiation12

0.88

0.9

0.92

0.94

0.96

0.98

1

32 64 128 256 512

R
el

at
iv

e
T

im
e

Processors

bisection
movement
swapping

swapping2
original

Figure 4: Relative Overall Performance on the Intel Touchstone DELTAtime step. In principle, these data could be cached on each processor in the swappingalgorithm, avoiding the need for the reorganization. As can be seen by examining thepartial radiation times in Table 3, however, the time required to reorganize the state datais less than the time required to exchange the input and output data on every time step.Hence, this situation is not expected to have a signi�cant impact on performance.Extended arrays are a source of overhead in the PCCM2 implementation of the datamovement algorithms, as data must be copied to and from the extended arrays at eachtime step. This overhead could be avoided in a climate model that used extended arraysthroughout both physics and dynamics. Our results suggest, however, that the swappingalgorithm would still outperform the data movement algorithms.While it would be possible to devise a new movement algorithm that was aware ofthe other imbalances that result in ine�ciencies in the current movement algorithm, theadditional overhead associated with this awareness would likely cancel any improvements.Additionally, for extended runs, the mappings must be generated at run time ratherthan precomputed and cached. Both the second swapping algorithm and the movementalgorithm incur an additional overhead because a new mapping must be computed foreach radiation time step. The �rst swapping algorithm uses only two �xed schemas andthus avoids this additional overhead. 13

5 10 15 20 25 30

2

4

6

8

10

12

14

16

Longitude

La
tit

ud
e

0 100 200 300 400 500 600
0

5

10

Time (msec)

F
re

qu
en

cyFigure 5: Physics Computation Time after Load-Balancing with the Swapping 2 Algorithm6.4 Experiments with Optimized PCCM2Further enhancements were made to PCCM2 independent of the version used for devel-opment of the load-balancing libraries. Many modi�cations were made in the dynamicsportion of the code, but physics remained relatively untouched. The modi�cations madeto the newer version of the code have resulted in a substantial performance improvementwithin dynamics and thus have made the physics imbalances more signi�cant to the overallexecution time. Trial runs using the �rst swapping algorithm indicate an overall improve-ment of 5.9 percent when the load-balancing code is added to the current version of themodel.7 ConclusionsThe results of this work are encouraging. The swapping algorithms succeeded in signif-icantly reducing the load imbalance, improving the total execution time by 5.8 percent.The overhead associated with the load-balancing code, however, is still rather high. Infuture work, we will investigate techniques for reducing the overhead. Caching state datais one possible approach. Another is to perform load balancing only on radiation physics.While less general, this requires moving far less data. In addition, the incorporation of14

5 10 15 20 25 30

2

4

6

8

10

12

14

16

Longitude

La
tit

ud
e

0 100 200 300 400 500 600
0

5

10

Time (msec)

F
re

qu
en

cyFigure 6: Physics Computation Time after Load-Balancing with the Bisection Algorithm)a transposed-based FFT into PCCM2 appears to make it possible to integrate input andoutput data movement into the transpose operation used to move from latitude/verticaldecomposition to latitude/longitude decomposition.A Library AlgorithmsWe describe two algorithms used within the data movement library. The �rst generatesa layout from a schema, and the second determines the communication required to movefrom one layout to another.A.1 Layout Generation AlgorithmThe layout generation algorithm generates a unique layout from a valid schema. Subse-quent algorithms use layouts to determine data movement requirements.A layout is a Nglat �Nglon array of (processor; latitude; index) triples that de�ne theexact mapping of each physics data column to a processor and data space. A columnis said to be on-processor if the mapping places it on the same processor as speci�ed bythe identity schema. A column that is not on-processor is referred to as an o�-processor15

column. A valid layout does not include any discontinuities or \holes" in the data spacemappings. In other words, the data columns must be packed to the left in each latitudeon each processor. Finally, on-processor columns must remain in their initial or \home"location whenever possible.The algorithm operates as follows:1. Scan the entire schema, and count the number of local (on-processor), L, and foreign(o�-processor), F , columns for each latitude on that processor. If on any latitudeL+ F > Nllonx, then signal an error.2. Scan each latitude of the processor's component of the schema, left to right, and placeon-processor columns in their \home" location. If more than F discontinuities existin the layout for the given processor and latitude, then the rightmost on-processorcolumns should be moved to �ll these excess \holes."3. Scan each latitude of the schema, left to right, and place each foreign column en-countered in the layout, selecting �rst areas of discontinuity and then free locationsas the destination.It should be noted that although the algorithm attempts to place each on-processorcolumn at the same location as the corresponding dynamics column, success is not guar-anteed. Consider the following schema:1 1 1 1 2 1 2 11 1 1 1 2 2 2 23 3 3 3 4 4 3 33 3 3 3 4 4 4 3Execution of algorithm schema to layout generates the following layout for this schema:1,1,1 1,1,2 1,1,3 1,1,4 2,1,1 1,1,5 2,1,2 1,1,61,2,1 1,2,1 1,2,3 1,2,4 2,2,1 2,2,2 2,2,3 2,2,43,1,1 3,1,2 3,1,3 3,1,4 4,1,1 4,1,2 3,1,5 3,1,63,2,1 3,2,2 3,2,3 3,2,4 4,2,1 4,2,2 4,2,3 3,2,5A.2 Generic Data Movement AlgorithmThe generic data movement algorithm determines the communication required to movefrom layout L1 to layout L2. In order to minimize communication costs on computerswith high message startup costs, it packs all data to be sent to a given processor into asingle message.1. PostReceives: determine which columns will be sent to the current processor fromother processors, and inform the message-passing system of expected messages.(a) Create a receive list identifying the columns that will be sent by other proces-sors.i. Initialize the receive list and a temporary transfer list to an empty state.16

ii. For each L2(i; j) = (m; k; p) with m = P , where P is the current processor:A. Find L1(i; j) = (n; l; o).B. If m 6= n, add (i; j) to the transfer list.iii. Sort the transfer list by n, the processor to be transmitted to.iv. For each processor P :A. Scan the transfer list, counting the number of items transmitted, t, forprocessor P .B. If t > 0, add (P; t) to the receive list.v. Save the receive list for later use by ReceiveColumns.(b) For each entry (P; t) in the receive list:i. Allocate a message bu�er containing enough space for t data columns andaddresses.ii. Inform the message{passing system as to each bu�er's location.2. SendColumns: determine which currently on-processor columns are to be sent toother processors, compose a message containing those columns, and then send themessages.(a) Create a transfer list that contains the columns present on this processor thatneed to be sent to other processors.i. Initialize the transfer list to an empty stateii. For each entry L1(i; j) = (n; l; o) with n = P , where P is the currentprocessor:A. Find L2(i; j) = (m; k; p).B. If m 6= n, then add (i; j) to the list of columns to transmit.iii. Sort the transfer list by m, the processor to be transmitted to.(b) Using the transfer list, compose and send a message for each processor to whichone more columns must be sent. Each message should contain the data of thelocal columns to be sent and their corresponding (k; p) addresses.3. LocalReorganization: move columns that are remaining on-processor but need tochange location in the data storage arrays. This can be accomplished invoking thefollowing algorithm for every entry L1(i; j) = (n; l; o) with n = P where P is thecurrent processor:(a) Find L2(i; j) = (m; k; p).(b) If m = n, move the data for column (i; j) from (l; o) in the data array space to(k; p). (Note: given the current restrictions, l = k will always be true)4. ReceiveColumns: complete the receive process by waiting for messages to arriveand placing the data contained within the messages into the appropriate data storagearrays. The following algorithm should be executed for each (P; t) item in the receivelist saved in PostReceives: 17

(a) Query the message{passing system for the arrival of a message from processorP waiting until one arrives.(b) For each of the t columns of data in the preassigned message bu�er:i. Extract the data and the (k; p) address for that column.ii. Place data into the data arrays at location (k; p).In the context of PCCM2, the generic movement algorithm is used by the followingalgorithms.State Reorganization: This algorithm is a modi�ed version of the generic movementalgorithm that maintains L1 internally as the last layout used. This algorithm exitsimmediately unless L1 6= L2.Input Exchange: This algorithm uses the generic movement algorithm with L1 alwaysset to the identity schema. It also returns the number of columns assigned to aprocessor.Output Exchange: This algorithm is a speci�c instantiation of the generic movementalgorithm that sets L2 to always be the identity schema.B Using the LibraryA library of data transport routines has been implemented and integrated into PCCM2.This library is responsible for taking data mappings from the load-balancing system andperforming the necessary data transfers to obtain those mappings. In PCCM2, the libraryis initialized within the load-balancing startup code, lbsetup, which is called from themain PCCM2 routine, ccm2. The use of the load-balancing system by PCCM2 can becontrolled using the C preprocessor macro PP LOAD BALANCE. When PP LOAD BALANCE isset to one, the load-balancing system is enabled; any other value results in its beingdisabled.B.1 SchemasIn the current implementation of the load-balancing algorithms, schemas can be eitherloaded from a schema set �le during program initialization or generated by user-suppliedcode during model execution. The method used is determined at compile time by the Cpreprocessor macro LB SCHEMA GEN. If this is de�ned, then the system expects that someform of code exists that will supply the schemas to the load-balancing system; otherwise,the load-balancing code will expect to �nd the schemas de�ned in a schema set �le.If the �le method is used, the load-balancing initialization code calls layout set. Thelayout set routine repeatedly calls the routines schema read and layout generate inorder to generate a set of layouts from the set of schemas found in the �le schema.set. Theschema.set �le is read by schema read, which processes the text �le by reading integer val-ues until it has obtained Nglat�Nglon values. It returns these values in a two-dimensionalarray. The next time the routine is called, it reads the next schema in the �le and returnsit providing one is found. Upon reaching end of �le, schema read will return a status offalse causing layout set to terminate. The schema.set �le may be organized in any way18

that proves to be visually pleasing to the user as long as the �rst schema de�ned is anidentity schema and there are exactly n�Nglat�Nglon integer elements present in the �lewhere n is a positive integer.If LB SCHEMA GEN is de�ned, then the load-balancing code expects that a routine exter-nal to the load-balancing system will be generating schemas. The schema generation rou-tine then uses layout replace to create a layout from the schema and register the layoutwith the load-balancing system. Like layout set, layout replace uses layout generateto generate a corresponding layout from the supplied schema. As with the schema �lemethod, an identity schema must be registered as the �rst schema.B.2 LayoutsAs stated earlier, schemas may be supplied to the load-balancing system by two di�erentmechanisms: schema �les or runtime generation. In either case, the schemas are convertedto layouts by layout generate. The information generated by the layout generateroutine is used by the data movement routines.The layouts currently registered with the load-balancing system are stored in the vari-able Layouts de�ned in layout.com. The Layouts variable is a four-dimensional arraywith dimensions of global latitude, global longitude, information type, and layout number.Given one of the following values for the information type dimension, all of the necessaryinformation can be obtained about a given layout.LAYOUT PROC: processor to which the data element is to be movedLAYOUT ROW: the local latitude on which the data element is to be placedLAYOUT COLUMN: the local longitude or column on which the data element is tobe placedB.3 Extended ArraysBecause some nonidentity schemas cause some processors to acquire additional physicsdata columns, it was necessary to extend the length of data arrays to accommodate theadditional data. Although separate arrays could be allocated for the additional data, thisapproach would result in unnecessarily complex modi�cations to the physics code as wellas poorer performance. The lengthening was achieved by (a) changing the dimension ofthe various physics data arrays from p lond to a larger value p londx (Nllonx), and (b)changing loops over these arrays to range from 1 to m nlonx. The changes were requiredin all subroutines contained within the phys call tree. The existence of the extendedarray additions with PCCM2 are controlled by the de�nition of the C preprocessor macroPHYS EXTEND ARRAYS.B.4 Data Movement RoutinesThe data elements in the PCCM2 computational grid are reorganized by using three rou-tines: state reorg, input exchange, and output exchange. The state reorg routineis responsible for reorganizing the state information whenever the schedule dictates thata new schema is to be used. The input exchange and output exchange are responsiblefor reorganizing input and output information, respectively. They also share the task of19

Table B-1: Reorganization subroutinesPost Send Local ReceiveState state post recv state send state local state receiveInput input post recv input send input local input receiveOutput output post recv output send output local output receivereorganizing input/output information. The input exchange routine is called prior to thephys routine, while output exchange is called after phys.Each of the three data movement routines is broken down into four subroutines: postfor receive, send data elements, local reorganization, and receive data elements. TableB-1 contains the routine names of these subroutines as they correspond to the threedata movement types. The posting routines call get transfer list to obtain a list ofexpect data columns, compose a receive list from the transfer list, store the receive listin Recv List, allocate su�cient memory from a bu�er to receive the data, and tell themessage-passing system what messages are expected and where in the bu�er to placethem when they arrive. The send routines call get transfer list to obtain a list ofpoints to be sent and then, prior to sending, pack the data columns together so that onlyone message is sent to any given processor. The local reorganization routines move datacolumns that are local to a given processor but are no longer in the correct location inthe data arrays. The receive routines, using the information stored in Recv List, waituntil expected messages have arrived and then unpack the messages, placing them in thespeci�ed locations within the data arrays.AcknowledgmentAccess to the Intel Touchstone DELTA was provided by the Concurrent SupercomputingConsortium.References[1] Bath, L., Olson, J., and Rosinski, J. User's Guide to NCAR CCM2. National Centerfor Atmospheric Research, Boulder, Colorado. 1992.[2] Drake, J., Walker, D., and Worley, P. Parallelizing the Spectral Transform Method {Part II, ORNL/TM-11855. Oak Ridge National Laboratory, Oak Ridge, Tennessee.1991.[3] Drake, J., Foster, I., Hack, J., Michalakes, J., Semeraro, B., Toonen, B., Williamson,D., and Worley, P. PCCM2: A GCM Adapted for Scalable Parallel Computers. Proc.AMS Annual Meeting, AMS. 1994.[4] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker D. SolvingProblems on Concurrent Processors. Prentice-Hall. 1988.20

[5] Michalakes, J. Analysis of Workload and Load Balancing Issues in the NCAR Com-munity Climate Model, ANL/MCS-TM-144. Argonne National Laboratory, Argonne,Illinois, 1991.[6] Michalakes, J., and Stevens, R. Analysis of Computational Load Distribution in theNCAR Community Climate Model. Computer Hardware, Advanced Mathematics andModel Physics Pilot Project Final Report, DOE/ER{0541T, pages 19{24. U.S. De-partment of Energy. 1992.

21

